Preliminary communication

Theoretical studies of nitrogen bonded organometallic carbonyls

NOEL J. FITZPATRICK and NIALL J. MATHEWS Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received September 17th, 1973)

SUMMARY

Molecular orbital calculations on $AM(CO)_{3-n}(N_2)_n$ ($AM = \pi - C_6H_6Cr$; n = 0, 1and $AM = \pi - C_5H_5Mn$; n = 0, 1) have shown that N_2 is a weaker π -acceptor than the CO ligands in the tricarbonyls and the dinitrogen complexes, and a stronger ($\sigma + \pi$) electron donor than a CO ligand in the corresponding tricarbonyl complexes.

The complexes π -C₅H₅Mn(CO)₂N₂ (I)¹ and π -C₆H₆Cr(CO)₂N₂ (II)² have been prepared by the oxidation of the hydrazines of π -C₅H₅Mn(CO)₃ (III) and π -C₆H₆Cr(CO)₃ (IV). To study the relative bonding effects of the carbonyl and dinitrogen ligands in these complexes, self-consistent charge and configuration molecular orbital³ (SCCC-MO) calculations were performed on the four complexes. Experimental geometries^{4, 5, 6}, where available, were used and the eigenvalues and eigenvectors for N₂ and CO were those used in an SCCC-MO study of Cr(CO)₅N₂⁷. Table 1 gives the pertinent calculated results and also some experimental carbonyl stretching frequencies.

The π^* populations in all four complexes are much greater for CO than N₂ thus confirming that the carbonyl is the greater π acceptor. The carbonyl π^* populations reflect the trend in experimental carbonyl frequencies and thus, $\nu(CO)$ (π -C₆H₆Cr(CO)₂N₂) < $\nu(CO)$ (π -C₅H₅Mn(CO)₂N₂) is predicted.

The 4σ orbital populations are constant throughout the series both for dinitrogen and carbonyl (1.982 ± 0.001) while the 5σ orbital populations of N₂ and of CO in the tricarbonyls differ little. Thus N₂ has a similar σ donating ability to a carbonyl in the tricarbonyl complexes. However, including π donation, the total electron donations from the dinitrogens in π -C₆H₆Cr(CO)₂N₂ and π -C₅H₅Mn(CO)₂N₂ are 0.121 and 0.114 electrons respectively while the corresponding values for each carbonyl in the tricarbonyls are 0.104 and 0.096. Thus the dinitrogens are better ($\sigma + \pi$) electron donors than the carbonyls in the tricarbonyls in agreement with Sellmann¹.

TABLE 1					
Orbital populations	Charges	π -C ₅ H ₅ Mn(CO) ₂ N ₂ ^d (1)	π-C ₆ H ₆ Cr(CO) ₁ N ₁ ^a (11)	π-C ₅ H,Mn(CO), (III)	#-C ₆ H ₆ CY(CO), (IV)
۲. ۲.		0.412(0.111)	0.439 (0.117)	0.327	0.356
# 5a		(5/ 4.5) 266.5 (050 (1.930)	3.992 (3.971) 1.901 (1.926)	1.930	3.992 1.923
40 Total formed		1.982(1,983)	1.981 (1.982)	1.982	1.981
totat torward donation/ligand		0.116(0.114)	0.126(0.121)	0.096	0.104
	ЧV	0.472	0,462	0.558	0.572
	МР	0.116	0,160	0.132	0.182
	4C0	-0.296	-0.313	-0.231	-0.251
	qN,	0.003	.004		
	# donation from	0.535	0.844	0.610	0.868
	r u unation to	0.063	0.382	0.053	0.296
ν(CO) Α1 (cm ⁻¹)		19801	i	2035*	1982°
^d Dinitrogen values in parentheses.	in parentheses.	le ministra e de la companya de la c			

.

C46

The large differences between the $\pi^*(CO)$ populations and the $\pi^*(N_2)$ populations are major factors in determining the relative charge distribution. Thus the metal in I and II, due to the decrease in back-bonding acquires a lower positive charge than in III and IV. Secondly there is an increase of back donation to the two remaining carbonyls in the dinitrogen complexes with a resultant increase in forward 5 σ donation (synergic effect). The net effect is a lowering of carbonyl charge relative to the tricarbonyl complexes and the carbonyl frequencies are decreased relative to the tricarbonyls. Thirdly, larger charge donation from metal to ring in I and II coupled with smaller donation from ring to metal results in lower positive ring charges for the dinitrogen complexes.

It is interesting to note that in II, in which the ring is a good electron acceptor, the decrease in charge on C_6H_6 relative to IV results mainly from an increase in backdonation whereas with C_5H_5 , which is a weak acceptor, the reduction in charge from III to I results almost totally from a decrease in forward donation.

The orbital populations and charges for N_2 in both dinitrogen complexes are remarkably similar. However, the π^* population in II is slightly greater than in I while the other populations are slightly less. Thus it is expected that the $\nu(N\equiv N)$ in II will be slightly less than 2169 cm⁻¹, the value in I¹.

REFERENCES

- 1 D. Sellmann, Angew. Chem. Internat. Edit., 10 (1971) 919.
- 2 D. Sellmann and G. Maisel, Z. Naturforsch, B, 27 (1972) 465.
- 3 D.A. Brown and R.M. Rawlinson, J. Chem. Soc. A, (1969) 1530.
- 4 M.F. Bailey and L.F. Dahl, Inorg. Chem., 4 (1965) 1314.
- 5 A.F. Berndt and R.E. Marsh, Acta Cryst., 16 (1963) 118.
- 6 B.R. Davis, N.C. Payne and J.A. Ibers, J. Amer. Chem. Soc., 91 (1969) 1240.
- 7 W.J. Chambers and N.J. Fitzpatrick, Proc. Roy. Irish Acad., 71 (1971) 97.
- 8 R.D. Fischer, Spectrochim. Acta, 19 (1963) 842.
- 9 D.A. Brown and F.J. Hughes, J. Chem. Soc. A, (1968) 1519.